Partiel du 7 novembre

Sujet du groupe D (cours par F. Hélein, TD par J. Deserti, I. Kharroubi, J. Sohier et M. Stienon)

Durée: 3 heures. Les documents sont interdits à l'exception des notes de cours.

Les téléphones portables et calculatrices sont interdits.

Exercice 1.

Questions de cours.

- **1. 1)** Soient E, F deux ensembles. Soit f une application de E dans F. À quelle condition dit-on que f est injective? Donner un exemple d'application injective de \mathbb{R} dans \mathbb{R} .
- 1. 2) Soient f une fonction polynôme de \mathbb{R} dans \mathbb{R} et a un réel. À quelle condition dit-on que a est une racine double de f? Donner un exemple de fonction polynôme admettant 1 comme racine double.
- **1.3)** Soit (u_1, \ldots, u_n) un système de vecteurs de \mathbb{R}^n . À quelle condition dit-on que ce système est libre? Donner un exemple de système libre dans \mathbb{R}^2 .

Exercice 2.

Résoudre dans \mathbb{C} l'équation $z^2 + iz - (1+i) = 0$.

On attend les solutions sous la forme a + ib avec a, b réels.

Exercice 3.

Soit $z=1+\mathrm{i}$. Écrire z sous la forme $r\mathrm{e}^{\mathrm{i}\theta}$ avec r>0 et θ dans \mathbb{R} . En déduire le module et l'argument de z^5 .

Exercice 4.

Soit f l'application de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^2$.

4.1) Décrire les sous-ensemble suivants de \mathbb{R} :

$$f(\{2\}), \qquad f(]-\infty,-1]), \qquad f([1,+\infty[), \qquad f^{-1}(\{4\}), \qquad f^{-1}([-1,1]).$$

4. 2) Donner un exemple de deux parties A et B de \mathbb{R} pour lesquelles

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

Exercice 5.

Soit f la fonction polynôme de \mathbb{R} dans \mathbb{R} définie par $f(x) = x^5 - 1$.

- 5. 1) Écrire f comme produit de cinq fonctions polynômes de degré 1, à coefficients dans \mathbb{C} .
- **5. 2)** Écrire f comme produit d'une fonction polynôme de degré 1, à coefficients dans \mathbb{R} , et de deux fonctions polynômes de degré 2, à coefficients dans \mathbb{R} .

Exercice 6.

Soient $P = X^6 - 3X^4 + 2X^3 + 1$ et $Q = X^4 + X^2 + 2X$. Effectuer la division euclidienne de P par Q.

Exercice 7.

Dans \mathbb{R}^3 , on considère les vecteurs v=(1,-2,3) et w=(2,-4,m), où $m\in\mathbb{R}$.

- 7.a) À quelle condition sur le paramètre m le vecteur w est-il multiple du vecteur v?
- **7.b)** On suppose que w n'est pas multiple de v et on considère l'ensemble P de toutes les combinaisons linéaires de v et w. Montrer qu'on a $P = \{(x,y,z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}$, où a, b, c sont des nombres réels, non tous les trois nuls, que l'on déterminera.

Exercice 8.

- 8.a) Dans \mathbb{R}^3 les vecteurs u=(1,0,1) et v=(0,2,1) sont-ils linéairement indépendants? Forment-ils une famille génératrice de \mathbb{R}^3 ?
- **8.b)** Dans \mathbb{R}^3 les vecteurs $u=(1,0,1),\ v=(2,1,0)$ et w=(0,1,2) sont-ils linéairement indépendants? Forment-ils une famille génératrice de \mathbb{R}^3 ?

Exercice 9. [hors barème: un peu de réflexion]

Déterminer 2 plans vectoriels (sous-espaces vectoriels de dimension 2) P_1 et P_2 dans \mathbb{R}^4 tels que $P_1 \cap P_2 = \{0\}$. Est-ce possible dans \mathbb{R}^3 ?